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METALLIC OXIDE SWITCHES USING THICK FILM TECHNOLOGY*

By: Dalpat N. Patel and Leo Williams, Jr.,
Electrical Engineering Department
North Carolina A&T State University

Greensboro, N.C. 27411

ABSTRACT

Metallic oxide thick film switches were processed on alumina substrates using thick
film technology. Vanadium pentoxide in powder form was mixed with other oxides e.g.,barium, strontium copper and glass frit, ground to a fine powder in a micromill andpastes and screen printable inks were made using commercial conductive vehicles andappropriate thinners. Some switching devices were processed by conventional screenprinting and firing of the inks and commercial cermet conductor terminals on 96%alumina substrates while others were made by applying small beads or "dots" of the
pastes between tiny platinum wires. Processing involved heat treatment at varyingtemperatures up to 1000 degrees C in vacuum, argon, reducing atmospheres, and airfiring in a tunnel kiln. Resistance - temperature tests showed resistance changes
by factors of 1000 to 10,000 at various critical temperatures between 50 and 90degrees C. Static and dynamic volt - ampere and pulse tests performed indicate that
the switching and self oscillatory characteristics of these devices could make them
useful in memory element, oscillator, automatic control applications, etc.

THEORY AND BACKGROUND

The oxide switches reported on here are Theories based on energy bands, laticebased primarily on large resistance structure deformations and defects as wellchanges in vanadium oxides which occur as phase transitions associated with in-at certain critical temperatures and/or ternal unit cell dimmensional changes asapplied voltages. Resistance anamolies indicated by X-Ray diffraction data have
and conductivity transitions in vanadium been advanced to explain the two to fouroxides have b en studied extensively in or more decade changes in resistance ob-the past . In recent years an in- served at critical temperatures and aD-creasing interest has been manifest in plied potentials. In general, no singlethe characteristics of transition oxides theory gives a complete picture-of thesuch as vanadium and titanium and with phenomena although the causes are gener-the advent of modern instruments and ally considered to be thermally, and/or
techniques greater insight into the pos- electrically and magnetically induced.sible causes and mechanisms of the insu-
lator resistor-semiconductor-metal tran- In 1970 research studied and experimentssitions exhibited by these oxides has were initiated on copper and vanadiumbeen gained. Numerous papers and re- oxide characteristics by Professor Leosearch results on this and related sub- Williams, Jr., and students in Electrical
jects were presented at an International and Mechanical Engineering at North
Symposium on Electronic properties and Carolina A&T State University. The objec-applications of oxides at Purdue niver- tive was to study the characteristics ofsity on May 29--June I, 1974.7, 8 ,10 the metallic oxides with a view toward

practical applications in electrical cir-
cuits. Vanadium oxide polycrystalline
structures were produced, tested, and pos-
sible applications in sensors, switching*This paper is the result of research and memory elements were discussed at the

performed under NASA Grant NGR 34-012-004, ISHM International Symposium in 19724.with supporting funds provided by North However, these crystals did not lend them-Carolina A&T State University at Greens- selves to practical processing of devicesboro, N.C., and constitutes part of a since a great deal of time was spent inthesis requirement for the Masters Degree selecting, and mounting crystals with thein Engineering. characteristics of interest. Subsequent



research efforts were aimed at using hand to the substrate as shown in :-ig. I
thick film techniques to make repeatable (a)
devices for study and applications. Sug-

gested materials and.methods of prepara- (b) Samples and devices designated
tion based upon Futaki's paper 3 were "PW" were made using vanadium pentoxide
used in making the devices reported on powder and were heated in a slightly re-
in this paper. Cope and Penn5 have pro- ducing Argon atmosphere, at 400 degrees
duced some small vanadium oxide based C for 21 hours. A paste was formed and
switches based upon procedures outlined small dots of this paste was applied be-
by Futaki. Bongers and Enz 6 have report- tween two platinum wires (used to make
ed the production of a working model of electrical connections) on alumina sub-
a bistable element consisting of a small strates. Terminations were completed by
crystal of V02 clamped between spring application of ESL - 1-30 conductive
loaded copper contacts. This paper deals paste by hand as shown in Fig. 1 (c).
with some of the results obtained at N.C. The substrates were thereafter heated in
A&T State University using thick film air at 125 degrees C.
techniques to make practical metallic
oxide switches and some applications of 2. Binary mixtures of vanadium pentoxide
these devices. and copper oxide

OXIDE SWITCHING MATERIAL PREPARATION AND A 50% mixture by weight of, V205 and
DEVICE FABRICATION cuprous or cupric oxide was fused, cooled,

Commercial grades of metallic oxides and crushed and milled to a fine powder which

Commercial grades of metallic oxides and was subsequently made into a paste and

chemicals made by Fisher Scientific Com- applied to the substrate as in Fig. 1 (a).

pany were used to make the switching These devices were designated "VC".
materials. Either vanadic acid technical
grade or certified V205 ( V-5 or V-7 ) 3. Ternary mixtures with vanadium pent-
in anhydrous powder form, was one consti-
tutent of all samples made. All materi- oxide

als were ground in a micromill, either Mixtures consisting of 71% V205, 17%
individually or in mixed form to a very strontium c onate and 12 ammonium
fine powder. The mixtures were combined strontium carbonate and 12% ammonium

with Electro-Science Laboratories (ESL) phosphate monobasic were ground, compres-
type 405 conductive vehicle and type 402 sed in 0.5 inch diameter discs at 10,000

thinner to make a paste, or ink suitable psi and were heated in a reducing atmos-

for thick film printing, and applied to phere at 400 degrees C for 19 hours. The
a 1 inch sq. alumina substrate in one of disc was cooled, crushed, and ground and

four types of configurations as shown in a paste was applied, as in Fig. l(a), to
Fig. 1. A gold or silver conductive ink alumina substrates between high tempera-

was screen printed and fired on all sub- ture gold conductive terminals which were

strates before the application of the processed using ESL-5800 ink. These sub-
oxide materials. This conductive pattern strates were heated in argon gas at 550

facilitated electrical connections to all degrees C for 16 hours and were subse-

samples via standard sockets. Some of quently quenched in argon. These devices

the samples were encapsulated in a Sears were designated F270".
clear acrylic coating or in stycast CP-16 Other samples of these materials were
for protection and/or to improve thermal mixed with the aforementioned conductive
characteristics. Although a large vari- vehicle and thinner to make an ink which
ety of mixtures were processed and tested' was screen printed on alumina substrates
the following three major types are re- using a 200 - 250 mesh steel screen in
ported on in this paper: the form of the resistor pattern shown in

1. Devices made using vanadium entoxide Fig. 1(d). A manual thick film printer

Devices made using vanad was used in this operation. The conduc-

only tor terminations consisted of prefired

ESL type 590 silver conductive ink.
(a) samples designated "W" were made After printing, the oxide was dried at

using vanadium pentoxide which was re- 150 degrees C and thereafter the sub-
duced in an ammonia atmosphere at 400 de- strates were submitted to a temperature
grees C for 18 hours. The powder was of 430 degrees C for 15 hours in a reduc-
thereafter mixed with 5% borosilicate ing atmosphere.
glass, a paste was formed and pplied by



REPRODUCIBILITY OF THE
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TEMPERATURE - RESISTANCE TESTS

The various oxide samples were placed C it was essentially an open circuit i.e.
in -a temperature chamber and resistance its resistance was above 10 megohms. At
measurements were made as the tempera- a critical temperature of 130 degrees C
ture was varied from room temperature the sample is essentially an insulator
in 10 degree increments up to 150 undergoing a positive resistance transi-
degrees C and decreased to room tempera- tion in the order of 107 or greater.
ture. Sample R-1 has the most desirable switch-

ing characteristic having almost a 3 de-
Fig. 2 shows the results of temperature cade resistance change in the 60 to 70
resistance tests on reduced V-5 and V-7 degree C temperature range. Except for
"PW" type samples. The V-7 sample shows the semiconductor to insulator transition
negligible switching tendacies. The exhibited in sample R-5, there are no
V-5 sample shows a marked 40K ohm resis- multiple transitions as observed in the
tance anamoly between 50 and 70 degrees other samples, and hysteresis effects
C, a secondary jump between 90 degrees have been greatly reduced.
C and 95 degrees C, and a third jump of
approximately one decade increase at Within the past year, E.I. Du Pont De
130 degrees C. Both samples show evi- Nemours & Co. introduced Tyox 9253, a new
dence of hysteresis effects. Fig. 3 vanadium oxide-based thick film switching
shows the results of the same type sam- ink which is screen printable. Samples
ples which were hzated'in argon except of this composition were printed and
that the V-7 sample contained glass but fired and Fig. 6 presents a temperature-
the V-5 sample did not. It is evident resistance plot of this commercially
that the sample with glass has a larger available material included herein for
resistance transition, is more stable comparative purposes.
at higher temperatures since the secon-
dary transition at 130 degrees C is
absent and therefore has a more suitable
switching characteristic.

Fig. 4 indicates a negative two decade
resistance change between room tempera-
ture and 35 degrees C and a positive
one decade change between 100 and 105
degrees C for the binary "VC" sample
consisting of fused vanadium pentoxide
and cuprous oxide. As in the previous
samples, all abrupt resistance changes b
took place during increasing tempera-
ture. The binary mixtures containing
glass showed no anamolies in the tem-
perature range investigated.

Temperature - resistance plots for three
types of ternary oxide mixtures are pre-
sented in Fig. 5. As indicated in the
figure, the oxide materials were applied
to two substrates by hand and on one
substrate the materials were screen
printed in thick film ink form. Each
of the substrates contained ten oxide
samples, however data for only one rep-
resentative sample i.e., R-3, R-1, and
R-5 for each substrate appears in the
plot. Several salient and interesting
features are in evidence from a study Fig. 1 Methods of applying oxides to
of the results of this test. The Fig. 1 Methods of applying oxides toof the results of this test. The substrates (a) and (b) by hand betweenprinted sample had a more gradual change substrates (a) and (b
in resistance (490K ohm from 41 to 90 printed conductors, (c) small dots be-

degrees C), and from 130 to 750 deorees -tween platinum wires, (d) screen printed
on prefired conductors.



Fig. 2 Resistance-Temperature curves
for V-5 and V-7 type vanadium pent-
oxide "PW" samples which were pro- Fig. 3 Resistance-Temperature curves Fig. 4 Temperature-Resistance
cessed in a reducing atmosphere. for "PW" vanadium pentoxide samples curves for mixtures of type

processed in an argon atmosphere. (a) V-7 vanadium pentoxide and cu-
V-7 mixed with 5% borosilicate glass prous oxide (a) with glass, (b)
(b) V-5 without glass. and (c) without glass

Fig. 5 Temperature chara- Fig. 6 Temperature-
teristics of ternary mix- Resistance charac-
tures (vanadium pentoxide, teristics for three
strontium carbonate and samples of Tyox 9253
ammonium phosphate). switching composition
Materials were applied screen printed and O
to the substrate by hand fired on a 96% alu- 0 -

and by screen printing. mina substrate. M

T '-
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ELECTRICAL TESTS ON OXIDE SWITCHES

Static and dynamic volt-ampere character-
istics were obtained for the various
samples and are indicated in Figs.7 to
11. Static V-1 curves were obtained
using a circuit consisting of a 2.7K ohm
limiting resistor, a 10 ohm current
monitoring resistor, the oxide switch
and a variable d.c. source, all connected
in series. Voltages across the oxide
switch and the current resistor were re-
corded using an X-Y plotter. Dynamic
volt-ampere curves were obtained using
a curve tracer and an oscilloscope camera.

Fig.7 shows results for a reduced "PW"
type sample of V-5 vanadium pentoxide
on the same substrate as the sample whose
temperature-resistance curve is shown in
Fig.2. Switching occurred at approxi-
mately 8 volts in the static test and at
about 15 volts in the dynamic tests at
a frequency of 120 Hz. Results for a
similar sample heated in argon is given
in Fig.8. This is the same-sample whose
temperature-resistance curve is shown in
Fig.3. A relatively large voltage range
over which the current is constant at

about 4 milliamps is in evidence after
the sample switched. The static voltages
required to switch these devices varied
from about 6 to 30 volts but the dynamic
voltages ranged from two to about five
times the corresponding static voltage.
Curves for the binary oxide mixture
indicated in Fig.9 switched statically
at 30 volts but did not switch at 120
volts in the dynamic test. Fig. 10
shows representative static and dynamic
volt-ampere curves for the ternary oxide

FA INI



devices. The static curve (a) is for milliwatts and is a function of thermal

sample F-270-2-RI applied by hand to the conductivities of the oxide materials,

substrate (see Fig.5) and the dynamic terminals, the substrate and the immedi
curve (b) is for the screen printed sam- terminals, the substrate and the immedi-

ple (see Fig.5). The dynamic character- ate environment, etc. Switching power

istic is for both positive and negative can be reduced by incorporating thermal

voltages and shows this sample to be bias circuits as well as decreasing the

bilateral as were all samples reported size of the devices. Switching time

on heraein. varied from a millisecond or less for

on herein. the single oxide system-to a microsecond

The self oscillatory nature of some of 
or less for the ternary samples as indi-

the devices is indicated in Fig.ll. This cated in the pulse tests.

was a type "F270" ternary device which repre-

spontaneously went into self oscillation The pulse test circuit diagram andoscillo-

while its static curve was being recorded scope wative voltage-ufor some of the metallic

on an X-Y plotter as shown on the right scop wave forms for some of the metallic

side of the figure. This phenomenon oxide switches are shown in Fig.12. The-

suggests the use of these devices in os- rmal time lag after application of the

cillator circuits as will be shown later. voltage pulse for the single oxide "PW"
device is in evidence. Such a device

might switch in 3 to 5 milliseconds. In-

tegration of the volt-ampere product

curve with respect to time would give the

minimum energy required for switching

during single pulse application, which

for this sample would be approximately

0.1 joule. It was verified by tests that

the pulse switching energy required 
could

be greatly reduced by using a d.c. 
source

in series with the pulse generator to

maintain the device at a temperature

slightly below the critical temperature

value. Thereafter a positive pulse would

switch the device to the low resistance

state and the d.c. source would maintain

it in this state until a subsequent nega-

tive pulse would switch it back to the

high resistance state. The device there-

fore could be used as a bistable resistor

or as a memory element. The required

thermal bias could be provided externally

or by a thick film resistive heater

printed directly on the substrate but

electrically isolated from the switching

circuit.

Pulse test wave forms for the "F270"

device whose thermal characteristic is

given in Fig.5 is also indicated in Fig.

12 on the right. The test was performed

at room temperature without thermal bias

Since all of the volt-ampere tests de- and indicates a switching time of 3 mi-

eall of the volt-ampere tests de- croseconds. The minimum energy required
picted herein were performed at room croseconds. The minimum energy requin the

temperature, consideration of the thermal for switchinof 10 was calculated to bes and

behavior of these devices would suggest order of 10-9 joule. Switching times and

behavior of these devices would suggest energies in these ranges suggest that the
that the switching or oscillatory mode energiesin these ranges suggest that the

occurs when the electrical power loss in switching mechanism could be induced by

the device is sufficient to raise its strong electric field strengths coupled

temperature to the critical points in- with thermal effects. Other researchers
5

temperature to the critical points in- who observed comparable switching times
dicated in the temperature-resistance
plots. The power required for switching using similar materials, have advanced

these devices can be approximated from a theoretical explanation based on ther-

the V-I curves to be in the order of mal considerations.

7
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design and more accurate ambient tempera- SUMMARY
ture control. The experimental relaxa-

tion oscillator circuit shown in Fig.13 Practical metallic oxide switches have
was set up using a single oxide system been processed using thick film techno-
device which gave reliable sustained logy. Critical switching temperatures
oscillations at frequencies ranging from from 30 to 130 degrees C were observed.
2.0 Hz. to 100 Hz. by varying the value Applications of these devices in logic
of the capacitor. and switching circuits, memory elements

and oscillators are apparent. Because
these devices can be made extremely
small, require milliwatt to microwatt

switching power with switching times in

the order of a microsecond or less at
voltages from 10 to 150 volts, they
could be readily used in the hybrid
microelectronics industry.
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